Приветствую Вас Гость | RSS

Гидравлика

Вторник, 19.03.2024, 08:06
О гидравлике

Гидра́влика (др.-греч. ὑδραυλικός — «водяной», от ὕδωρ — «вода» и αὐλός — «трубка») — наука о законах движения (см. гидродинамика капельных жидкостей и газов) и равновесии жидкостей (см. гидростатика) и способах приложения этих законов к решению задач инженерной практики.
В отличие от гидромеханики, гидравлика характеризуется особым подходом к изучению явлений течения жидкостей; она устанавливает приближённые зависимости, ограничиваясь во многих случаях рассмотрением одноразмерного движения, широко используя при этом эксперимент, как в лабораторных, так и в натурных условиях.
Наряду с этим намечается всё большее сближение между гидромеханикой и гидравликой: с одной стороны, гидромеханика всё чаще обращается к эксперименту, с другой — методы гидравлического анализа становятся более строгими.

Некоторые принципы гидростатики были установлены ещё Архимедом, возникновение гидродинамики также относится к античному периоду, однако формирование Г. как науки начинается с середины 15 в., когда Леонардо да Винчи лабораторными опытами положил начало экспериментальному методу в Г. в 16—17 вв. С. Стевин, Г. Галилей и Б. Паскаль разработали основы гидростатики как науки, а Э. Торричелли дал известную формулу для скорости жидкости, вытекающей из отверстия. В дальнейшем И. Ньютон высказал основные положения о внутреннем трении в жидкостях. В 18 в. Д. Бернулли и Л. Эйлер разработали общие уравнения движения идеальной жидкости, послужившие основой для дальнейшего развития гидромеханики и Г. Однако применение этих уравнений (так же как и предложенных несколько позже уравнений движения вязкой жидкости) для решения практических задач привело к удовлетворительным результатам лишь в немногих случаях, в связи с этим с конца 18 в. многие учёные и инженеры (А. Шези, А. Дарси, А. Базен, Ю. Вейсбах и др.) опытным путём изучали движение воды в различных частных случаях, в результате чего Г. обогатилась значительным числом эмпирических формул. Создававшаяся т. о. практическая Г. всё более отдалялась от теоретической гидродинамики. Сближение между ними наметилось лишь к концу 19 в. в результате формирования новых взглядов на движение жидкости, основанных на исследовании структуры потока. Особо заслуживают упоминания работы О. Рейнольдса, позволившие глубже проникнуть в сложный процесс течения реальной жидкости и в физическую природу гидравлических сопротивлений и положившие начало учению о турбулентном движении. Впоследствии это учение, благодаря исследованиям Л. Прандтля и Т. Кармана, завершилось созданием полуэмпирических теорий турбулентности, получивших широкое практическое применение. К этому же периоду относятся исследования Н. Е. Жуковского, из которых для Г. наибольшее значение имели работы о гидравлическом ударе и о движении грунтовых вод. В 20 в. быстрый рост гидротехники, теплоэнергетики, гидромашиностроения, а также авиационной техники привёл к интенсивному развитию Г., которое характеризуется синтезом теоретических и экспериментальных методов. Большой вклад в развитие Г. сделан сов. учёными (работы Н. Н. Павловского, Л. С. Лейбензона, М. А. Великанова и др.).

Практическое значение гидравлики возросло в связи с потребностями современной техники в решении вопросов транспортирования жидкостей и газов различного назначения и использования их для разнообразных целей. Если ранее в Г. изучалась лишь одна жидкость — вода, то в современных условиях всё большее внимание уделяется изучению закономерностей движения вязких жидкостей (нефти и её продуктов), газов, неоднородных и т. н. неньютоновских жидкостей. Меняются и методы исследования и решения гидравлических задач. Сравнительно недавно в Г. основное место отводилось чисто эмпирическим зависимостям, справедливым только для воды и часто лишь в узких пределах изменения скоростей, температур, геометрических параметров потока; теперь всё большее значение приобретают закономерности общего порядка, действительные для всех жидкостей, отвечающие требованиям теории подобия и пр. При этом отдельные случаи могут рассматриваться как следствие обобщенных закономерностей. Г. постепенно превращается в один из прикладных разделов общей науки о движении жидкостей — механики жидкости.

Гидравлика, как прикладная наука, применяется для решения различных инженерных задач в области:
  • Водоснабжения и водоотведения (канализации);
  • Транспортировка веществ по трубопроводу: газ, нефть и т. п.;
  • Строительства различных гидротехнических сооружений, водозаборных сооружений;
  • Конструирования различных устройств, машин, механизмов:
насосов;
компрессоров;
демпферов;
амортизаторов;
гидравлических прессов;
Гидравлических приводов.

Гидравлика обычно подразделяется на две части:
  • теоретические основы гидравлики , где излагаются важнейшие положения учения о равновесии и движении жидкостей,
  • практическая гидравлика, применяющую эти положения к решению частных вопросов инженерной практики.
Основные разделы практической гидравлики:
  • гидравлика трубопроводов — течение по трубам;
  • гидравлика открытых русел (динамика русловых потоков) — течение в каналах и реках;
  • истечение жидкости из отверстия и через водосливы;
  • гидравлическая теория фильтрации даёт методы расчёта дебита и скорости течения воды в различных условиях безнапорного и напорного потоков (фильтрация воды через плотины, фильтрация нефти, газа и воды в пластовых условиях, фильтрация из каналов, приток к грунтовым колодцам и пр.) ;
  • гидравлика сооружений — взаимодействие потока и твёрдого преграждения.
Во всех указанных разделах движение жидкости рассматривается как установившееся, так и неустановившееся (нестационарное).

Основные разделы теоретической гидравлики:
  • гидростатика;
  • гидродинамика;
  • кинематическая гидравлика;

Прикладное значение

Гидравлика широко использует теоретические положения механики и данные экспериментов. В прошлом гидравлика носила чисто экспериментальный и прикладной характер, в последнее время её теоретические основы получили значительное развитие, это способствовало сближению её с гидромеханикой. Гидравлика решает многочисленные инженерные задачи, рассматривает многие вопросы гидрологии, в частности, законы движения речных потоков, перемещения ими наносов, льда и шуги, процессы формирования русла и т. д. Этот комплекс вопросов объединяется речной гидравликой (динамикой русловых потоков), которую можно рассматривать как самостоятельный раздел гидравлики.

По отношению к гидромеханике гидравлика выступает как инженерное направление, получающее решение многих задач о движении жидкости на основе сочетания эмпирических зависимостей, установленных опытным путём, с теоретическими выводами гидромеханики.
В Г. рассматриваются также движение наносов в открытых потоках и пульпы в трубах, методы гидравлических измерений, моделирование гидравлических явлений и некоторые др. вопросы. Существенно важные для расчёта гидротехнических сооружений вопросы Г. — неравномерное и неустановившееся движение в открытых руслах и трубах, течение с переменным расходом, фильтрация и др. — иногда объединяют под общим названием «инженерная гидравлика» или «гидравлика сооружений».
Т. о., круг вопросов, охватываемых Г., весьма обширен и законы Г. в той или иной мере находят применение практически во всех областях инженерной деятельности, а особенно в гидротехнике, мелиорации, водоснабжении, канализации, теплогазоснабжении, гидромеханизации, гидроэнергетике, водном транспорте и др.

Вклад в гидравлику

Исследования в области Г. координируются Международной ассоциацией гидравлических исследований (МАГИ). Её орган — «Journal of the International Association for Hydraulic Research» (Delft, с 1937).
Развитие гидравлики связано с именами учёных:
  • Архимед;
  • Ломоносов, Михаил Васильевич;
  • Торичелли, Эванджелиста;
  • А. Шези;
  • Д.Бернулли;
  • Н. Е. Жуковский;
  • В. Г. Шухов
  • Н. П. Петров;
  • И. С. Громек;
  • Н. Н. Павловский;
  • А. Н. Космогоров;
  • С. А. Христианович;
  • М. А. Великанов;
  • Д. В. Штеренлихт
  • А. Я. Милович;
  • Альтшуль
  • Константинов
  • Большаков
  • Л.Прандтль
  • Вентури
  • Пито
  • Маковский
  • Никурадзе
  • Эйлер
  • Лагранж
  • Навье
  • Стокс
  • Дарси
  • Вейсбах
  • и др.